
N° de candidat		•
----------------	--	---

Partie II.2. - Épreuve de technologie (30 min – 25 points)

Les candidats doivent composer, pour cette partie II.2. «Technologie», sur le sujet qui sera à rendre dans une copie.

La **Serriculture** ou **culture sous serre** désigne la pratique qui consiste à cultiver des végétaux (soit en culture maraîchère ou en horticulture ornementale) à l'intérieur d'une serre.

Une **serre automatisée** (**Fig. 1**) permet de protéger des cultures et d'en améliorer leur croissance en maintenant un taux d'humidité adapté, une température suffisante, etc.

1. Fonctions des composants de la serre

1.1 Compléter le tableau en associant pour chaque fonction le (les) composant(s) correspondant(s).

Fonction	Composant(s)
Aérer la serre	
Détecter la température dans la serre	
Alimenter la serre en lumière naturelle	

2. Étude de la fonction aération.

La lucarne sur la toiture de la serre (Fig. 2 et Fig. 3) est une trappe automatisée ayant pour fonction d'aérer la serre en cas de fortes températures.

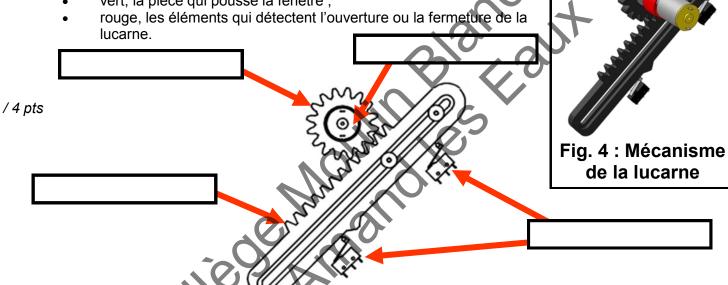
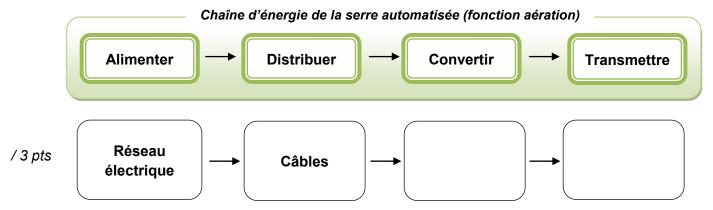


Fig. 3 : Détail lucarne

Fig. 3 : Détail lucarne


- 2.1 Compléter la vue ci-dessous en repérant la roue dentée, la crémaillère, le moteur et les détecteurs de fin de course et colorier en :
- bleu, l'élément qui produit un mouvement ;
- vert, la pièce qui pousse la fenêtre ;

- 2.2 Pour les trois éléments ci-dessous, indiquer s'ils sont animés d'une rotation ou d'une translation :
- Crémaillère

/3 pts

- Roue denté
- Moteur:
- 2.3 Compléter la chaîne d'énergie par les éléments assurant les fonctions Convertir et Transmettre

3. Étude de la fonction arrosage.

Afin d'obtenir un taux d'humidité adapté à la plante, des capteurs (**Fig. 5**) sont installés dans la terre. Si la terre est trop sèche, un programme ordonne à une pompe d'envoyer de l'eau au pied des végétaux.

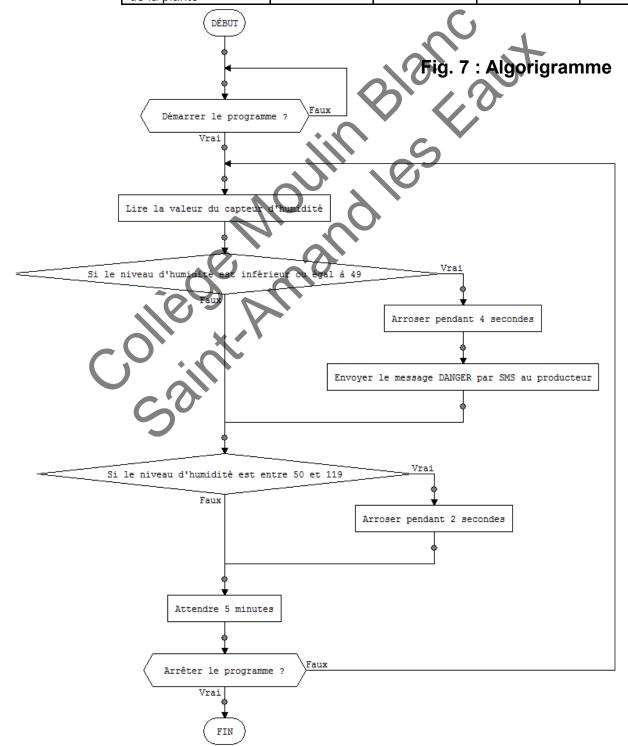

Le tableau (**Fig. 6**) décrit l'état de santé des tomates ou des concombres en fonction du niveau d'humidité détecté par le capteur.

Fig. 5 : Capteur d'humidité

Fig. 6 : Niveau d'humidité

Exemples : tomates, concombres	Terre sèche	Terre peu humide	Terre humide	Terre trop humide
Niveau d'humidité	0 – 49	50 – 119	120 – 169	170 – 255
Risque pour la santé de la plante	Danger	Limite	Correct	Danger

D'après l'algorigramme décrivant l'arrosage automatisé de plants de tomates et de concombres (**Fig. 7**) :

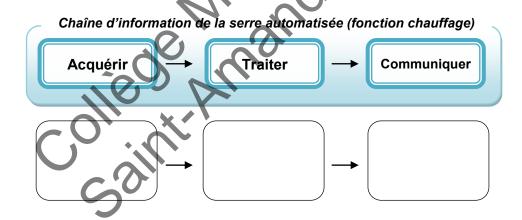
3.1 Compléter l'action que doit réaliser le programme si le capteur envoie la **valeur 80** comme niveau d'humidité.

/3 pts • Action :

- **3.2** Le programme reçoit **successivement** les valeurs 12, 32, 45, 80, 118, 120 en provenance du capteur. En déduire :
- La durée totale de l'arrosage :

/ 6 pts

- Le nombre de SMS DANGER reçus par le producteur :
 - 4. Étude de la fonction chauffage.


Afin de faire germer des graines de tomates, il faut assurer une température idéale de germination à l'intérieur de la serre.

Le boîtier de commande (un automate programmable ou un « Arduino » par exemple) reçoit les informations de la sonde de température et envoie des ordres au chauffage par des câbles.

Fruit ou légume germination

Comprise entre 20 et 25°C

4.1 Compléter la chaîne d'information

/ 3 pts